ООО «АЙСИБИКОМ»

Датчик на люк ICB410 со спецификацией NB-IoT

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Содержание

1.	Назначение	3
2.	Функции устройства	3
3.	Технические характеристики	4
4.	Установка SIM карты NB-IoT	4
5.	Перезагрузка датчика при помощи магнита	5
6.	Тестирование датчика	6
7.	Установка датчика	7
8.	Установка интерфейса	8
9.	Изменение параметров устройства	8
10.	Указания мер безопасности	. 11
11.	Правила хранения и транспортирования	11
12.	Гарантии изготовителя (поставщика)	12

1. Назначение

Датчик ICB410 разработан для диагностики состояния люка, например, для электрических и канализационных систем. Когда перекрытие люка смещено, открыто или возникла какая-либо нештатная ситуация, устройство выдает сигнал тревоги. Через встроенный модуль NB-IoT датчик передает информацию о статусе на вход NB-IoT сетевого сервера, а затем на прикладной сервер. Пользователи могут удаленно контролировать состояние люка, т.е. смещен ли он после установки или нет. Это оборудование может широко использоваться в проектах «умный город».

2. Функции устройства

Подключение аккумулятора или перезапуск датчика. Когда датчик подключен к источнику питания, он передает часть данных, отображая, что устройство находиться в покое. Когда прибор поднят/сдвинут (относительный угол больше чем 15°), передается сигнала тревоги, который отображает текущее состояние прибора.

Диагностика состояния устройства: датчик диагностирует свое состояние каждые 10 минут. Время может корректироваться через серийный порт или платформу.

Время загрузки данных: по умолчанию данные загружаются один раз в 4 часа, отображается текущий статус устройства. Время может корректироваться через серийный порт или платформу.

Примечание: Если получен сигнал тревоги при перемещении устройства, необходимо перезагрузить датчик.

Таблица 1. Основные функции датчика ICB410

Основные функции	Описание	Сигнала тревоги (по умолчанию)	Поступят ли данные после получения сигнала тревоги	Комментарий
Диагностика перемещения	Проверка состояния крышки люка	15°	да	Когда угол больше 15°, устройство инициирует загрузку данных.
Диагностика состояния батареи	Проверка заряда батареи	20% (Опционально)	нет	Отправка сигнала тревоги, если батарея заряжена менее чем на 20 %
Диагностика уровня жидкости	Определение уровня жидкости в резервуаре	30 см (Опционально)	нет	Отправка сигнала тревоги, если расстояние от датчика до поверхности жидкости – меньше 30 см (full).

3. Технические характеристики

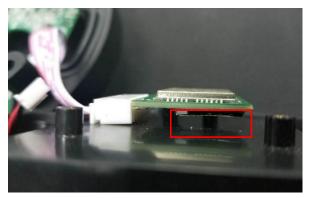

Технические характеристики приведены в таблице 2.

Таблица 2. Технические характеристики датчика ICB410

	Размер	115*115*50 мм	
Основные	Macca	150 г	
o enobable	Цвет	Черный	
	Материал корпуса	АБС	
Датчик	Основной	ускорение обнаружения	
	Степень точности	может быть настроена онлайн	
Контроллер	MCU STM32, 32бит ARM контроллер яд		
Частота	NB-IoT	B1/B3/B8/B5/B20/B28	
	Внутренняя батарея	неперезаряжаемая литиевая батарея ER18505M 7000мАч @3.6 B	
Мощность	Время работы батареи	более 10 лет	
	Потребляемая мощность	<120мA@3.6B (в рабочем режиме), <40мкА @3.6B (в спящем режиме)	
	Рабочая температура	-20 ~ +70°C	
Окружающая среда	Температура хранения	-40 ~ +85°C	
	Уровень защиты	IP68	

4. Установка SIM карты NB-IoT.

Сим-карта: микро-карта NB-IoT имеет идентичный датчику диапазон. Вставьте сим-карту NB-IoT в слот для карты (Для замены или извлечения сим-карты нажмите на нее). (Рисунок 1, Рисунок 2)

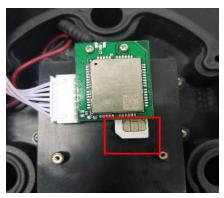


Рис. 1 Установка микро SIM карты NB-IoT

Рис. 2 Установка микро SIM карты NB-IoT

5. Перезагрузка датчика при помощи магнита

Прикладывание магнита (Рисунок 3) перезапускает (Рисунок 4) устройство. Если устройство будет перезагружено успешно, то датчик отобразит данные о его текущем состоянии и об уровне жидкости (full/empty).

Рис. 3 Магнит

Рис. 4 Перезапуск датчика при помощи магнита

6. Тестирование датчика

- 1. Вставьте микро SIM карту NB-IoT;
- 2. Подключите батарею;

Устройство не подключено к батарее по умолчанию, поэтому откройте корпус устройства перед тестированием и подключите батарею к соответствующему положению на материнской плате (белый разъем 2pin), как показано ниже.

Рис. 5 Батарея не подключена

Рис. 6 Батарея подключена к плате

3. Проверка функции беспроводной связи;

После подключения батареи устройство передаст данные. Если данные получены, то беспроводная связь работает в нормальном режиме.

4. Диагностика перемещения;

Перезагрузите устройство с помощью магнита;

Поднимите устройство на угол больше 15 °, в это время устройство должно отправить сигнал тревоги;

Примечание: Если получен сигнал тревоги при перемещении устройства, необходимо перезагрузить датчик.

5. Диагностика уровня жидкости (2м);

Определение расстояние от устройства до поверхности жидкости, которое дает информацию о наполненности резервуаров.

Зафиксируйте датчик.

Расположите объект для диагностики (резервуар) под датчиком. Объект и устройство должны находиться в параллельном положении, а расстояние между объектом и датчиком должно составлять от 2 м до 30 см.

Перезагрузите устройство с помощью магнита. В это время необходимо загрузить текущую высоту (d) и статус будет – empty (пустой).

Измените расстояние (d) между устройством и датчиком так, чтобы оно было от 15 см и до 30 см, подождите 10 минут, датчик изменит значение высоты и состояние изменится на - full (полный).

Снова измените расстояние (d) так, чтобы расстояние составляло от 2 м и до 30 см, через 10 мин устройство снова загрузит текущее значение высоты (d), и статус изменится на empty (пустой).

Оставьте датчик на расстоянии от 2 м и до 30 см над пустым резервуаром, в этом состоянии датчик не должен отправлять данные.

Измените расстояние датчика над резервуаром несколько раз для проверки точности определения высоты и времени отправки данных (10 мин).

Примечание: Слепая зона для датчика -15 см, т.е. если расстояние (d) - менее 15 см, то высота не будет определена точно. При тестировании, необходимо убедиться, что расстояние между объектом и датчиком составляет от 2 м до 15 см.

7. Установка датчика

В соответствии с положением отверстий для установки оборудования, сделайте три отверстия на крышке люка и прикрепите устройство к верхней крышке с помощью крепежных винтов, как показано ниже.

Примечание:

- При установке убедитесь, что датчик оборудования (белая часть) расположен перпендикулярно центру крышки люка;
- Держите устройство параллельно дну колодца или параллельно поверхности жидкости. Не наклоняйте устройство, чтобы избежать неточного определения уровня жидкости;
- После установки используйте магнит для перезагрузки устройства. Вы можете проверить правильность установки, через данные высоты (d);

Рис. 7 Установка датчика на крышку люка

8. Установка интерфейса

Подробные сведения об интерфейсе питания, конфигурации параметров устройства и интерфейсе обновления приведены ниже.

- Подключение к аккумулятору;
- Интерфейс UART: этот интерфейс используется для настройки параметров устройства, таких как интервал загрузки данных, APN, IP и т.д.

Рис. 7

9. Изменение параметров устройства

В процессе настройки вы можете изменить соответствующие параметры устройства, такие как время загрузки, уровень заряда аккумулятора и т. д.

9.1 Необходимые инструменты

Необходимое оборудование:

- TTL и кабель;
- Программное обеспечение;
- Оборудование;

Рис. 8.1 TTL

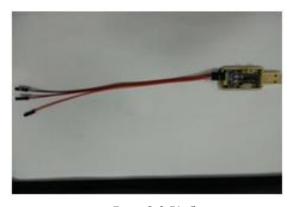


Рис. 8.2 Кабель

9.2 Подключение TTL к датчику

Подключите TTL к датчику, как показано на рисунке 9 и 10. Определите последовательность портов устройства: положения GND, TX и RX отмечены на диаграмме, рисунок 7.

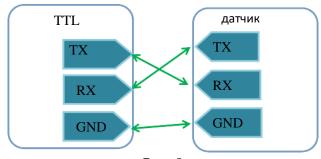


Рис. 9

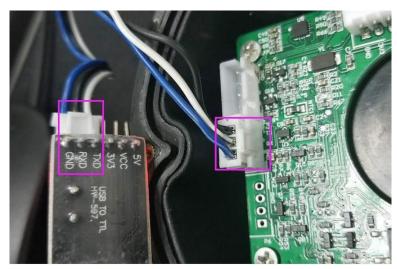


Рис. 10

9.3 Конфигурация параметров устройства

Настройка параметров через программное обеспечение порта с последовательным приёмом данных.

Откройте программное обеспечение порта с последовательным приёмом данных, как показано на рисунке 8.6.

Параметры, необходимые для порта с последовательным приёмом данных DC410, показаны на рисунке 8.7;

Номер порта (Вы можете выбрать номер порта в диспетчере устройств вашей системы)

Установленная скорость передачи данных: 115200

Бит четности: Нет **Биты данных**: 8 **Стоп бит**: 1

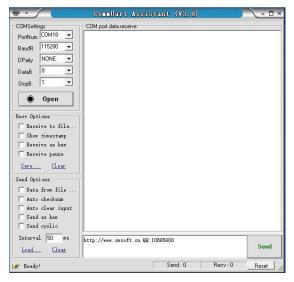


Рис. 11 Интерфейс по умолчанию

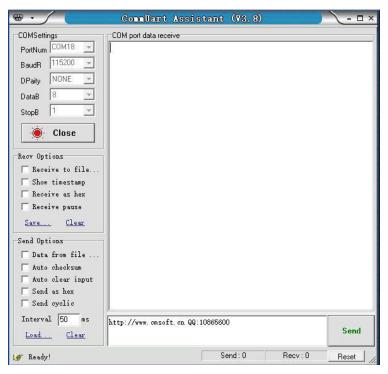


Рис. 12 Настройка параметров

Подключите батарею к соответствующему разъему на материнской плате, как показано на рисунке 13.

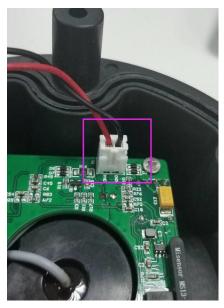


Рис 13

Когда батарея будет подключена, вы сможете увидеть информацию, выводимую через порт. В этот момент датчик работает и может отправлять команды. В этот момент можно настроить требуемые параметры.

Примечание: Когда датчик переходит в спящий режим, отправка данных невозможна. Необходимо перезапустить датчик, можно повторно подключить батарею или использовать магнит.

10. Указания мер безопасности

При монтаже и эксплуатации прибора необходимо руководствоваться «Правилами эксплуатации электроустановок потребителей», утвержденными Минэнерго России 13.01.2003г и межотраслевыми правилами по охране труда. Помещение, в котором устанавливается прибор, должно отвечать требованиям, изложенным в «Правилах устройства электроустановок» (Главгосэнергонадзор России, М., 1998г.).

11. Правила хранения и транспортирования

Климатические условия транспортирования должны соответствовать следующим условиям:

- температура окружающего воздуха от минус 50^{0} C до плюс 50^{0} C;
- относительная влажность воздуха до 98% при 25⁰C;
- атмосферное давление от 84,0 до 107,0 кПа (от 630 до 800 мм рт. ст.).

Прибор может транспортироваться всеми видами транспорта (в крытых вагонах, закрытых автомашинах, контейнерах) в соответствии с «Правилами перевозки грузов» (издательство «Транспорт», 1983г).

Хранение прибора должно производиться только в упаковке предприятия-изготовителя в отапливаемых помещениях при температуре воздуха от $+5^{\circ}$ C до $+40^{0}$ C и относительной

влажности воздуха не более 80%. В помещениях для хранения не должно быть агрессивных примесей (паров кислот, щелочей), вызывающих коррозию.

12. Гарантии изготовителя (поставщика)

Предприятие-изготовитель гарантирует соответствие прибора техническим условиям при соблюдении условий транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок эксплуатации прибора устанавливается 1 год, считая с даты передачи прибора в эксплуатацию.

Изготовитель в период гарантийного срока эксплуатации прибора имеет право осуществлять надзор за правильностью эксплуатации с целью повышения качества и эффективности эксплуатации.

Вышедшие из строя в течение гарантийного срока эксплуатации узлы прибора подлежат замене или ремонту силами предприятия-изготовителя за счет средств изготовителя.

Пользователь лишается права на безвозмездный ремонт в гарантийный период в случае нарушения пломб, при механических повреждениях пользователем, если устранение неисправностей прибора производилось лицом, не имеющим права выполнения ремонта и технического обслуживания.